
Daniel Llamocca

DIGITAL LOGIC DESIGN
VHDL Coding for FPGAs

Unit 2

✓ CONCURRENT DESCRIPTION

▪ ‘with-select’, ‘when-else’ statements

▪ Arithmetic expressions, integer type, type

conversions.

▪ Examples: multiplexor, LUT, decoder, tri-

state buffer

Daniel Llamocca

✓ CONCURRENT DESCRIPTION

▪ In this description, the order of the statements is

irrelevant: all the statements represent circuits that are

working at the same time. This type of description is well-

suited for combinatorial circuits.

▪ The use of sentences with ‘and’, ‘or’, ‘xor’, ‘nand’, ‘nor’,

‘xnor’, and ‘not’ is a basic instance of the concurrent

description. It is sometimes called ‘horizontal description’.

▪ In Unit 4, the so-called ‘structural description’ is just a

generalization of the concurrent description.

▪ Since we already know how to build circuits based on logic

gates, we now present two concurrent assignment

statements (with – select, when – else), which are far

more powerful than the statements with logic gates when

it comes to describe complex circuits.

Daniel Llamocca

▪ CONCURRENT ASSIGNMENT STATEMENTS:

▪ Selected Signal Assignment: WITH-SELECT: This statement
allows assigning values to a signal based on certain criterion.

▪ MUX 2-to-1:

0

1

a

b

y

s

s a yb

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

1

0

1

s y

0

1

a

b

library ieee;

use ieee.std_logic_1164.all;

entity my_mux21 is

port (a, b, s: in std_logic;

y: out std_logic);

end my_mux21;

architecture st of my_mux21 is

begin

with s select

y <= a when '0',

b when others;

end st;

y = s(a b + a b) + s(a b + a b)

y = sa + sb

with s select: 's'specifies
the selection criterion
when specifies the value
assigned to 'y' for each value of 's'
when others: we need to include
all the possible values of 's', that
are 9 according to std_logic type.

Daniel Llamocca

▪ Selected Signal Assignment (WITH – SELECT):

▪ MUX 8-to-1

0

s

1

2

3

a

b

c

d

3

y

4

5

6

7

e

f

g

h

library ieee;

use ieee.std_logic_1164.all;

entity my_mux81 is

port (a,b,c,d,e,f,g,h: in std_logic;

s: in std_logic_vector (2 downto 0);

y: out std_logic);

end my_mux81;

architecture struct of my_mux81 is

begin

with s select

y <= a when "000", -- note ',' instead of ';'

b when "001",

c when "010",

d when "011",

e when "100",

f when "101",

g when "110",

h when others;

end struct;

Daniel Llamocca

▪ Selected Signal Assignment (WITH – SELECT):

▪ MUX 6-to-1

library ieee;

use ieee.std_logic_1164.all;

entity my_mux61 is

port (a,b,c,d,e,f: in std_logic;

s: in std_logic_vector (2 downto 0);

y: out std_logic);

end my_mux61;

architecture struct of my_mux61 is

begin

with s select

y <= a when "000",

b when "001",

c when "010",

d when "011",

e when "100",

f when "101",

'-' when others;

end struct;

0

s

1

2

3

a

b

c

d

3

y

4

5

e

f

Value '-': Don't care output

It helps the synthesizer to

optimize the circuit

Daniel Llamocca

▪ Selected Signal Statement
Example: 4-to-1 LUT

OLUT

ILUT

4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

data(7)

data(8)

data(9)

data(10)

data(11)

data(12)

data(13)

data(14)

data(15)

library ieee;

use ieee.std_logic_1164.all;

entity my4to1LUT is

generic (data: std_logic_vector (15 downto 0):=x"FEAB");

port (ILUT: in std_logic_vector (3 downto 0);

OLUT: out std_logic);

end my4to1LUT;

architecture struct of my4to1LUT is

begin

with ILUT select

OLUT <= data(0) when "0000",

data(1) when "0001",

data(2) when "0010",

data(3) when "0011",

data(4) when "0100",

data(5) when "0101",

data(6) when "0110",

data(7) when "0111",

data(8) when "1000",

data(9) when "1001",

data(10) when "1010",

data(11) when "1011",

data(12) when "1100",

data(13) when "1101",

data(14) when "1110",

data(15) when "1111",

'0' when others;

end struct;

generic clause: Note how
‘data’ is not an input, but a
constant parameter

➢ my4to1LUT.zip:

my4to1LUT.vhd,

tb_my4to1LUT.vhd

Daniel Llamocca

▪ 7-segment DECODER (outputs  inputs)

7-seg

decoderb
c
d

l
e
d
s

4EN

➢ sevenseg.zip: sevenseg.vhd,

tb_sevenseg.vhd, sevenseg.ucf

library ieee;

use ieee.std_logic_1164.all;

entity sevenseg is

port (bcd: in std_logic_vector (3 downto 0);

sevenseg: out std_logic_vector (6 downto 0);

EN: in std_logic_vector (3 downto 0));

end sevenseg;

architecture struct of sevenseg is

signal leds: std_logic_vector (6 downto 0);

begin

-- | a | b | c | d | e | f | g |

-- |leds6|leds5|leds4|leds3|leds2|leds1|leds0|

with bcd select

leds <= "1111110" when "0000",

"0110000" when "0001",

"1101101" when "0010",

"1111001" when "0011",

"0110011" when "0100",

"1011011" when "0101",

"1011111" when "0110",

"1110000" when "0111",

"1111111" when "1000",

"1111011" when "1001",

"-------" when others;

-- Nexys4: LEDs are active low.

-- Each 7-seg display has an active-low enable

EN <= "1110";

sevenseg <= not(leds);

end struct;

Daniel Llamocca

▪ Decoder 2-to-4 with enable:

DECODER

w

E

y
2

4

library ieee;

use ieee.std_logic_1164.all;

entity dec2to4 is

port (w: in std_logic_vector (1 downto 0);

E: in std_logic;

y: out std_logic_vector (3 downto 0));

end dec2to4;

architecture struct of dec2to4 is

signal Ew: std_logic_vector (2 downto 0);

begin

Ew <= E & w; -- concatenation

with Ew select

y <= "0001" when "100",

"0010" when "101",

"0100" when "110",

"1000" when "111",

"0000" when others;

end struct;

Daniel Llamocca

▪ CONCURRENT ASSIGNMENT STATEMENTS :

▪ Conditional signal assignment: WHEN - ELSE:
Similarly to the selected signal assignment, this statement allows a
signal to take one out of many values based on a certain condition.
The syntax however is different and it allows to describe circuits in a
more compact fashion.

▪ Example: MUX 2-to-1

0

1

s

a

b
y

library ieee;

use ieee.std_logic_1164.all;

entity mux21_cond is

 port (a, b, s: in std_logic;

 y: out std_logic);

end mux21_cond;

architecture est of mux21_cond is

begin

 y <= a when s = '0' else b;

end est;

▪ If the condition on when is
FALSE, we assign a value to
‘y’ after else. This
assignment can also be
conditioned by another
when-else clause (see next
example)

Daniel Llamocca

▪ Conditional signal assignment (WHEN - ELSE):

▪ Example: MUX 4-to-1

0

s

1

2

3

a

b

c

d

2

y

library ieee;

use ieee.std_logic_1164.all;

entity mux41_cond is

 port (a, b, c, d: in std_logic;

 s: in std_logic_vector (1 downto 0);

 y: out std_logic);

end mux41_cond;

architecture est of mux41_cond is

begin

 y <= a when s = "00" else

 b when s = "01" else

 c when s = "10" else

 d;

end est;

▪ Note that the assignment
on ‘b’ is conditioned by
another when–else
clause. Same for ‘c’. Only
the assignemnt of ‘d’ is
not conditioned. There is
no limit to the number of
nested conditions.

Daniel Llamocca

▪ Conditional signal assignment (WHEN - ELSE):

▪ Example: Priority Encoder 4-to-2

when-else has a
priority level,  it is
easy to describe a
priority encoder. With
with-select, this
circuit description
would be very tedious.

library ieee;

use ieee.std_logic_1164.all;

entity my_prienc is

port (w: in std_logic_vector (3 downto 0);

y: out std_logic_vector (1 downto 0);

z: out std_logic);

end my_prienc;

architecture struct of my_prienc is

begin

y <= "11" when w(3) = '1' else

"10" when w(2) = '1' else

"01" when w(1) = '1' else

"00";

z <= '0' when w = "0000" else '1';

-- If no input is '1', z is '0'

end struct;

Example: Priority encoder 8 to 3:

➢ my_prienc8to3.zip: my_prienc8to3.vhd,

tb_my_prienc8to3.vhd, my_prienc8to3.ucf

PRIORITY
ENCODER

w3 y1

y0
w2

w1

w0 z

w1 w0

0 0

x x

1 x

0 1

0

x

x

x

0 0 1

w2 y0 zy1

0 0

1 1

1 0

0 1

0

1

1

1

0 0 1

0

1

0

0

0

w3

Daniel Llamocca

▪ Conditional signal assignment (WHEN - ELSE):

▪ Example: 4-bit comparator

▪ Note the use of the
operators ‘=, >, <‘ to
compare integer
numbers

▪ Always indicate what
type of numbers we
are working with. In
the example we are
using unsigned
numbers. For 2’s
complement, use
‘signed’.

COMPA-
RATOR

A
AeqB

B

AgB

AlB
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all; -- unsigned #s

entity my_comp is

port (A,B: in std_logic_vector (3 downto 0);

AeqB, AgB, AlB: out std_logic);

end my_comp;

architecture struct of my_comp is

begin

AeqB <= '1' when A = B else '0';

AgB <= '1' when A > B else '0';

AlB <= '1' when A < B else '0';

end struct;

Daniel Llamocca

▪ Conditional Signal Assignment (WHEN - ELSE):

▪ Example: Demultiplexor

0

s

1

2

3

a

b

c

d

2

x

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity my_demux is

port (s: in std_logic_vector (1 downto 0);

x: in std_logic;

a,b,c,d: out std_logic);

end my_demux;

architecture struct of my_demux is

begin

a <= x when s = "00" else '0';

b <= x when s = "01" else '0';

c <= x when s = "10" else '0';

d <= x when s = "11" else '0';

end struct;

▪ Concurrent
Description: Note
that the order of
the statements is
not relevant.

Daniel Llamocca

▪ Example: 4-to-1 Bus Mux using with-select and
when-else.

➢ my_busmux4to1.zip: my_busmux4to1.vhd, tb_my_busmux4to1.vhd

0

s

1

2

3

a

b

c

d

2

y

N

N

N

N

N

‘generic’ clause: It
allows the definition of
signals with
customizable widths.

library ieee;

use ieee.std_logic_1164.all;

entity my_busmux4to1 is

generic (N: INTEGER:= 8);

port (a,b,c,d: in std_logic_vector (N-1 downto 0);

s: in std_logic_vector (1 downto 0);

y_r, y_t: out std_logic_vector (N-1 downto 0));

end my_busmux4to1;

architecture structure of my_busmux4to1 is

begin

with s select

y_r <= a when "00",

b when "01",

c when "10",

d when others;

y_t <= a when s = "00" else

b when s = "01" else

c when s = "10" else

d;

end structure;

Daniel Llamocca

▪ Conditional Signal Assignment (WHEN - ELSE):

▪ Example: Tri-State Buffer

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity my_tristate is

port (A, OE: in std_logic;

F: out std_logic);

end my_tristate;

architecture struct of my_tristate is

begin

F <= A when OE = '1' else 'Z';

end struct;

FA

OE

➢ my_tristate.zip: my_tristate.vhd, tb_my_stristate.vhd,

my_tristate.ucf

Daniel Llamocca

▪ Conditional Signal Assignment (WHEN - ELSE):

▪ Example: Bidirectional Port
4

OE

WDAT DATA
4

RDAT

library ieee;

use ieee.std_logic_1164.all;

entity my_bidport is

port (WDAT: in std_logic_vector(3 downto 0);

RDAT: out std_logic_vector(3 downto 0);

OE: in std_logic;

DATA: inout std_logic_vector(3 downto 0));

end my_bidport;

architecture struct of my_bidport is

begin

DATA <= WDAT when OE = '0' else (others => 'Z');

RDAT <= DATA when OE = '1' else (others => 'Z');

end struct;

Daniel Llamocca

▪ Example: Bidirectional Port (test bench)

➢ my_bidport.zip: my_bidport.vhd, tb_my_bidport.vhd

To avoid data contention,
make sure that DATA = Z
when DATA is to be an output.

DATA

OE

RDAT

WDAT

1100100111100000 0011

1110 0011

1010

0000 1010 1001

1100

library ieee;

use ieee.std_logic_1164.all;

entity my_bidport is

end my_bidport;

architecture struct of my_bidport is

...

begin

uut: my_bidport port map (WDAT, RDAT, OE, DATA);

process

begin

DATA <= "ZZZZ"; wait for 100 ns;

OE <= '0'; WDAT <= x"A"; DATA <= "ZZZZ"; wait for 20 ns;

OE <= '1'; DATA <= x"E"; wait for 20 ns;

OE <= '0'; WDAT <= x"9"; DATA <= "ZZZZ"; wait for 20 ns;

OE <= '1'; DATA <= x"3"; wait for 20 ns;

DATA <= x"C"; wait;

end process

end;

Daniel Llamocca

library ieee;

use ieee.std_logic_1164.all;

entity sevenseg is

port (bcd: in integer range 0 to 9;

-- bcd: 0000 to 1001 -> 4 bits required

sevenseg: out std_logic_vector (6 downto 0);

EN: in std_logic_vector (3 downto 0));

end sevenseg;

architecture struct of sevenseg is

signal leds: std_logic_vector (6 downto 0);

begin

-- | a | b | c | d | e | f | g |

-- |leds6|leds5|leds4|leds3|leds2|leds1|leds0|

with bcd select

leds <= "1111110" when 0,

"0110000" when 1,

"1101101" when 2,

"1111001" when 3,

"0110011" when 4,

"1011011" when 5,

"1011111" when 6,

"1110000" when 7,

"1111111" when 8,

"1111011" when 9;

-- Nexys3: LEDs are active low.

-- Each 7-seg display has an active-low enable

EN <= "0111";

sevenseg <= not(leds);

end struct;

✓ INTEGER DATA TYPE

▪ A signal of type ‘integer’
represents a binary
number. But we do not
specify the number of bits
for the signal, only the
range of decimal values
(this can be very
convenient).

▪ Example: 7-segment
decoder. The BCD input is
an integer from 0 to 9,
requiring 4 bits (computed
by the synthesizer).

▪ Drawback: the datatype
‘integer’ does not allow
access to the individual
bits (unlike
‘std_logic_vector’)

Daniel Llamocca

▪ You must specify the
representation for a,b
(signed/unsigned):

▪ ‘_unsigned’ library: a-b:

unsigned subtraction.

▪ ‘_signed’ library: a-b:

signed (2C) subtraction

▪ Overflow not accounted
for. Here, you might need
to zero/sign-extend the
input operands.

▪ This implements a fully
combinational circuit. ➢ ex_addsub.zip: ex_addsub.vhd,

tb_ex_addsub.vhd, ex_addsub.xdc

▪ ARITHMETIC STATEMENTS:

▪ We can use the operators +, -, and * for rapid

specification of arithmetic operations for integer numbers. We can also
use the comparison statements: >, <, =, /=, >=, <=.

▪ +/-: The operands and the result must have the same bit width.

▪ Example: Adder/subtractor implemented by multiplexing the adder and
subtractor outputs:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity ex_addsub is

port (a,b: in std_logic_vector (3 downto 0);

s: in std_logic;

f: out std_logic_vector (3 downto 0));

end ex_addsub;

architecture structure of ex_addsub is

begin

with s select

f <= a+b when '0',

a-b when others;

end structure;

Daniel Llamocca

Important:

▪ You must select the
representation
(unsigned/signed) for
the operands.

▪ ‘_signed’:

multiplication in 2C
arithmetic.

▪ ‘_unsigned’:

unsigned multiplication

▪ ARITHMETIC STATEMENTS:

▪ Example: Multiplier (fully combinational):

▪ You can use the operator ‘*’. Make sure the output size is correct.

✓ Input Operators: a (NA bits), b (NB) bits.

✓ Output result: f (NA+NB bits)

▪ Operations:

✓ use ieee.std_logic_unsigned.all; →A*B treats A, B as unsigned
✓ use ieee.std_logic_signed.all; →A*B treats A, B as signed.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

-- use ieee.std_logic_signed.all;

entity mult4x4 is

port (a,b: in std_logic_vector (3 downto 0);

f: out std_logic_vector (7 downto 0));

end mult4x4;

architecture structure of mult4x4 is

begin

f <= a*b;

end structure;

Daniel Llamocca

▪ ARITHMETIC STATEMENTS

▪ Arithmetic operators and comparison statements:
You must indicate the representation: signed or unsigned.

▪ First Approach: we can specify the representation for all operations in
the .vhd file using non-standard libraries (supported by Xilinx®):

✓ use ieee.std_logic_unsigned.all; → all operations will treat
data as unsigned. Here A<B, A-B treats A, B as unsigned.

✓ use ieee.std_logic_signed.all; → all operations will treat
data as signed. Here A<B, A-B treats A, B as signed.

signal A, B, S: std_logic_vector (3 downto 0);

f <= ‘1’ when A < B else ‘0’;

S <= A - B;

▪ Second Approach: using the following non-standard library, we can
specify a representation for specific statements within the .vhd file:

✓ use ieee.std_logic_arith.all;

f <= ‘1’ when unsigned(A) < unsigned(B) else ‘0’;

S <= unsigned(A)-unsigned(B); → unsigned subtraction!

• We can also use ‘signed’:

S <= signed(A)-signed(B); → signed subtraction

Daniel Llamocca

▪ ARITHMETIC STATEMENTS

▪ The library ieee.std_logic_arith.all

lets us perform conversions from bit vector to binary and viceversa:

▪ signal A: std_logic_vector (3 downto 0);

▪ signal F: integer range 0 to 15;

▪ conv_integer(A): It converts the bit vector A into an integer.

▪ F <= conv_integer(A); It converts A into an integer. We need

to indicate the representation of A, i.e., we also must use either
the ieee.std_logic_unsigned (or signed) library.

▪ F <= conv_integer(unsigned(A)); This omits the use of the
ieee.std_logic_unsigned (or signed) library.

▪ conv_std_logic_vector(F,N): It converts an integer data into

a vector with N bits. The representation is given by the range of N.

▪ F <= 5;

▪ A <= conv_std_logic_vector (F,4); → A=0101.

